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Holoprosencephaly (HPE), characterized by incomplete separation of
forebrain and facial components into left and right sides, is a common
developmental defect in humans. It is caused by both genetic and
environmental factors and its severity covers a wide spectrum of
phenotypes. The genetic interactions underlying inherited forms of HPE
are complex and poorly understood. Animal models, in particular mouse
mutants, are providing a growing understanding of how the forebrain
develops and how the cerebral hemispheres become split into left and
right sides. These insights, along with the characterization to date of
some of the genes involved in human HPE, suggest that two distinct
mechanisms underlie the major classes of HPE, �classic’ and midline
interhemispheric (MIH). Disruption either directly or indirectly of the
ventralizing effect of sonic hedgehog signaling appears central to all or
most forms of classic HPE, while disruption of the dorsalizing effect of
bone morphogenetic protein signaling may be key to cases of MIH HPE.
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Holoprosencephaly (HPE) is the most frequent
developmental forebrain defect described in
humans, with an estimated 1 in 5000 to 10,0000
live births and 1 in 200–250 cases of spontaneous
abortions (1–5). A common feature defining
HPE is the incomplete separation of the anterior
part of the forebrain, or telencephalon, into left
and right hemispheres, which normally occurs
between the 18 and 28 days of gestation. This
defect is due to a failure to form midline struc-
tures. HPE is also usually associated with cranio-
facial abnormalities, but the focus of this review
is on the forebrain defects.
The etiology of HPE is very heterogeneous due

to the involvement of both environmental and
genetic factors, as well as the interactions between
them (6–8). The wide spectrum of HPE pheno-
types can be observed within a single family in
which individuals who carry an identified HPE
mutation are very severely affected or clinically

normal (9–11). The extreme heterogeneity within
HPE families and among sporadic cases makes it
difficult at present to establish clear genotype–
phenotype correlations and to counsel potential
parents who may carry an HPE mutation about
the risks involved in having an affected child.
Our knowledge about the genetic pathways
involved in normal forebrain development comes
mainly from studies on animal models. The
increasing number of mouse mutants with telen-
cephalic midline defects that mimic human HPE
continues to lend key insights into the ontology
of human HPE and raises new questions that
will need to be solved before we can more fully
understand this devastating human birth defect.

HPE: two classes and four types

In humans, an increasing knowledge of HPE
comes from magnetic resonance imaging and
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high-quality X-ray computerized tomography
scans. These analyses define two major classes of
HPE that encompass four types. The two classes
are �classic’ HPE, in which the most severely
affected region of the hemispheres is the basal/
ventral forebrain, and midline interhemispheric
HPE (MIH HPE), or syntelencephaly, in which
the cortical/dorsal part of the hemispheres fails
to separate and in which the basal forebrain can
be normal (8, 12–14).
Classic HPE is composed of three different

types. At the most severe end of the phenotypic
spectrum of malformations is alobar HPE, in
which the ventral forebrain is unseparated, the
whole forebrain is monoventricular and small,
and the face can be cyclopic. In the second type,
semilobar HPE, the anterior regions of the hemi-
spheres fail to cleave but the posterior regions are
often normal. The third ventricle is small and
partially formed, and the cortex, basal ganglia,
and thalamus are significantly fused. Finally, in
lobar HPE, the anterior forebrain is incompletely
separated but to a lesser degree than in semilobar
cases. Individuals have a fully formed third ventri-
cle, although dysmorphic, and anterior structures
such as the corpus callosum, and the olfactory
bulbs may be missing or hypoplastic.
The second class of HPE known as MIH HPE

is rarer and milder than classic HPE, in some
cases only affecting the dorsal forebrain. The dor-
sal part of the hemispheres fail to divide in the
posterior frontal and parietal regions, and in
many cases, the caudate nuclei and thalami are
also incompletely separated. Nevertheless, there is
an interhemispheric separation of the basal fore-
brain, the anterior frontal lobes, and the occipital
regions. It has been suggested that genetic path-
ways necessary for normal development of the
dorsal forebrain are impaired in MIH HPE,
whereas in classic HPE, genetic pathways impor-
tant for the development of the ventral forebrain
may be more often defective (15).

Genetic heterogeneity of HPE

The genetics of human HPE are complex, and
only a few mutated genes that underlie familial
cases of HPE have been identified. Up to 45%
of patients with HPE display clear cytogenetic
abnormalities such as trisomy 13, trisomy 18,
and triploidy (16). From karyotype analyses, at
least 12 genomic regions spread over 11 different
chromosomes (loci HPE1 to HPE12) have been
described as containing HPE candidate genes

(8, 17). Pedigree studies support autosomal dom-
inant, recessive, and X-linked inheritance (17, 18).
Moreover, HPE can sometimes be associated with
other congenital syndromes such as Smith–Lemli–
Opitz and Pallister–Hall syndromes (19, 20). The
heterogeneity in familial HPE from severely
affected to clinically normal individuals carrying
the same mutation may be due to the influence of
environmental or teratogenic factors [e.g. alcohol,
diabetes, cholesterol, retinoic acid (21–23)] or
modifier genes (24). Consistent with the existence
of modifier genes and multiple interacting loci,
heterozygous mutations in two HPE genes are
required to produce a severe phenotype in three
human cases to date [sonic hedgehog (SHH) and
TGIF (25), SHH and ZIC2 (25), and PTC1 and
GLI2 (26)], but this number is likely to rise as
more candidate HPE genes are characterized and
their interactions understood.
Keys to this characterization are studies using

mouse models. Note that in mice, in contrast to
humans, heterozygous mutations in single genes
associated with HPE do not usually display
a phenotype but only the homozygous mutants
produce the phenotype (Table 1). This suggests
that mice are less prone to haploinsufficiency
than humans. Nevertheless, genes associated
with human cases of HPE, when homozygously
mutated in mice, more often than not also result
in HPE. Furthermore, mouse mutants with HPE
phenotypes, for which the gene has not yet been
associated with HPE in humans, provide new
candidate HPE and modifier genes. Another
advantage of the mouse is that mutations in two
or more genes can readily be combined to study
and understand the genetic interactions that
cause HPE (Table 1).
Several genes when mutated on their own in

mouse [e.g. Cdo and Tgif (27–29)] exhibit HPE
with variable expressivity or penetrance, mimick-
ing what is observed in familial cases of HPE in
humans. For instance, in Cdo mutants, the phe-
notypes range from a normal forebrain to semi-
lobar HPE. The spectrum of variability in these
mutant mice is strain dependent, suggesting that
modifier genes account for the heterogeneity
(28–30). It should be possible to identify these
modifier genes through quantitative trait loci
analyses. The genetic interactions underlying the
heterogeneity of HPE phenotypes in humans are
just beginning to be understood, and mouse
models will continue to be instrumental in eluci-
dating the genetic pathways that regulate the for-
mation of the telencephalic midline and that lead
to HPE when disrupted.
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Table 1. HPE genes in humans and mice

Genes Phenotypes in humans Phenotypes in mice References

Classic HPE
SHH HPE3: large spectrum from

cyclopia and alobar HPE to
normal individuals

Shh2/2: cyclopia, lack of
ventral telencephalon, HPE

(25, 53, 56, 57, 63, 76,
77, 80, 100)

GLI2 HPE9: pituitary anomalies,
craniofacial abnormalities,
alobar HPE, microcephaly,
hydrocephalus

Gli22/2: normal telencephalon,
hypothalamus defects

(79, 101, 102)

PTC HPE7: large spectrum from
semilobar HPE to lobar HPE
with craniofacial defects to
normal individuals

Ptc2/2: no HPE, failure to close
the neural tube

(75, 81)

GLI2 and PTC HPE-like and craniofacial
defects

ND (26)

SHH and TGIF Semilobar HPE, craniofacial
defects

ND (25)

SHH and ZIC2 Semilobar HPE, microcephaly,
craniofacial defects

ND (25)

SMO ND Smo2/2: cyclopia, lack of
ventral telencephalon, HPE

(82)

Smo cKO: lack of ventral
telencephalon with normal DM

(59)

DISPA ND Disp2/2: cyclopia, lack of
ventral telencephalon, HPE

(70)

CDO ND Cdo2/2: from severe to
microform of HPE (strain
dependence), lack of ventral
telencephalon

(28, 29, 71)

GAS1 ND Gas12/2: microform of HPE (73)
CDO and GAS1 ND Cdo2/2;Gas12/2: craniofacial

defects, lack of ventral
telencephalon

(72)

GAS1 and SHH ND Gas12/2;Shh2/1: craniofacial
defects

(73)

FGF8 ND Fgf8 hypomorph: HPE, lack of
ventral telencephalon, lack of
the DM; Fgf8 cKO: HPE, lack of
ventral telencephalon

(43)

FGFR1 and FGFR2 ND Fgfr12/2;Fgfr22/2 cKO: HPE,
lack of ventral telencephalon

(65)

NODAL ND Nodal cKO: small head,
no midline separation of the
forebrain

(85, 86)

NODAL and SMAD2 ND Nodal1/2;Smad21/2:
cyclopia, head truncation

(91)

NODAL and ActRIIA ND ActrIIA2/2;Nodal1/2:
cyclopia, head truncation

(90)

NODAL and GDF1 ND Gdf12/2;Nodal1/2:
HPE, head truncation

(89)

TGIF HPE4: lobar and semilobar HPE,
agenesis of the corpus callosum,
microcephaly, craniofacial defects

Tgif2/2: normal telencephalon
TgifDexon3: HPE, exencephaly,
microcephaly

(27, 88, 103)

FOXH1 (FAST1) HPE Foxh12/2: lethal prior to
forebrain formation

(8, 12, 24, 104, 105)

TDGF1 (CRIPTO) HPE: minor craniofacial
abnormalities, small head size,
single ventricle

Cripto2/2: lethal prior to
forebrain formation

(87, 106, 107)

OTX2 and FOXA2 ND Otx21/2;Foxa21/2: HPE,
cyclopia, anterior forebrain
truncation

(108)

MEGALIN/LRP2 ND Lrp2 cKO: HPE, craniofacial
defects, lack of ventral
telencephalon

(84)

The ups and downs of holoprosencephaly

415



Development of the telencephalic midline

The mammalian forebrain is derived from the
embryonic prosencephalon located at the most
anterior part on the neural tube. Shortly after
neural tube closure at around embryonic day 9.5
in the mouse (E9.5) and 3.5 weeks of gestation
in humans, the prosencephalon starts to differen-
tiate into telencephalon, future cerebral hemi-
spheres, and diencephalon, future thalamus. By
E10.5 in mouse and 35 days in human, the telen-
cephalon undergoes dramatic morphological
changes, becoming split medially into two bilat-
eral vesicles (Fig. 1). In contrast to their more
lateral neighbors, midline cells undergo higher
levels of cell death and reduced proliferation,
leading to a pinching off of the expanding cere-
brum into right and left hemispheres. Dorsal
midline cells differentiate medially into the cho-
roid plexus, which secretes the cerebrospinal
fluid, and into the adjacent cortical hem, which
induces formation of the hippocampus and is
also a source Cajal–Retzius neurons (31–34).
Ventrally and rostrally, midline cells contribute

to the septum and ganglionic eminences, which
give rise to parts of the basal ganglia. Several
secreted signaling molecules are expressed by
telencephalic midline cells. Dorsally, the midline
expresses bone morphogenetic proteins (BMPs)
and wingless-Int proteins (WNTs), while the
rostral and ventral midline express fibroblast
growth factors (FGFs) and SHH, respectively
(Fig. 1). These factors are hypothesized to inter-
act in forming and patterning the telencephalic
hemispheres (35–37).

The dorsal midline

BMP signaling is necessary for dorsal midline
development. At least five BMP genes are ex-
pressed in the dorsal midline [Bmp2, Bmp4,
Bmp5, Bmp6, and Bmp7; (38)]. BMP4-soaked
beads implanted on cultured explants of lateral
telencephalon induce dorsal midline features
such as cell death, low levels of proliferation,
expression of the midline marker Msx1 and
repression of the non-midline marker Foxg1

Table 1. Continued

Genes Phenotypes in humans Phenotypes in mice References

NOGGIN and CHORDIN Chrd2/2;Nog1/2: HPE,
cyclopia, craniofacial defects,
truncation of the rostral
forebrain, lack of the
ventral telencephalon

(83)

DKK-1 ND Dkk12/2: from cyclopia to
lack of anterior head structure;
Dkk11/2;Nog1/2: from
cyclopia to lack of anterior
head structure, lack of ventral
forebrain

(109, 110)

SIX3 HPE2: semilobar, alobar, cyclopia,
microcephaly, craniofacial defects

Six3 hypomorph: lack of eyes
and forebrain

(92–95)

ZIC2 See below
MIH HPE
BMPs ND Bmpr1a2/2;Bmpr1b2/2 cKO:

MIH HPE, normal ventral
telencephalon, lack of CPe
and CH

(40)

ZIC2 HPE5: alobar, semilobar, MIH HPE,
microcephaly, hydrocephaly,
agenesis of corpus callosum,
mild face dysmorphism

Zic2 hypomorph: HPE,
abnormal ventral
telencephalon, lack
of the DM

(15, 44, 94, 96–98)

FGF8 See above
RFX4_v3 ND Rfx4_v32/2: HPE, normal

ventral telencephalon, severe
reduction of the CPe and CH,
hypoplasia of the dorsal
telencephalon

(42)

LHX5 ND Lhx52/2: lack of CPe and CH,
expansion of cortical
primordium

(111)

CH, cortical hem; CPe, choroid plexus; cKO, conditional knockout; DM, dorsal midline; HPE, holoprosencephaly; MIH, midline
interhemispheric; ND, not determined.
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(38). Telencephalon-specific knockouts of type I
BMP receptor genes demonstrate that BMP sig-
naling is required for the formation of a dorsal
midline (39, 40). Notably, double Bmpr1a and
Bmpr1b mutants fail to separate the telencepha-
lon into left and right hemispheres, mimicking
MIH HPE (40). A role for disrupted BMP sig-
naling in human HPE, however, has yet to be
identified.
In addition to BMP genes, WNT genes, Wnt2b,

Wnt3a, Wnt5a, and Wnt8b are expressed in the
dorsal midline (31, 32). Although Wnt3a is essen-
tial for hippocampal development (32, 41),
WNTs have not been implicated in midline for-
mation. Interestingly, however, a knockout of
Rfx4-v3, a transcript variant encoding a winged-
helix transcription factor, results in loss of Wnt3a
expression and HPE (42). Nevertheless, a direct
role for WNT genes in dorsal midline formation
and in HPE has not been demonstrated.
Other than BMP receptor genes, mutations in

only two other genes to date cause the loss of the
dorsal midline, Fgf8 and Zic2, and in both these
cases, the mutations are hypomorphic (43, 44).
Zic2 encodes a zinc finger transcription factor
expressed in both the dorsal and ventral midline
(40, 45–47). Zic2 expression is not dependent on
BMP signaling (40) but can be induced by
ectopic FGF8 application (47), suggesting that it

acts downstream of FGFs and in parallel or
upstream of BMPs (Fig. 3). Although the ventral
telencephalon, which appears grossly normal in
the Zic2 mutant, has not been examined in detail
(44), ZIC2 mutations in humans can lead to
both classic and MIH HPE (see below) (15).

The rostral midline

The rostral midline expresses at least five Fgf
genes: Fgf3, Fgf8, Fgf15 (Fgf19 in humans),
Fgf17, and Fgf18 (48–51). FGF8-soaked beads
placed in dorsolateral areas of the chick telen-
cephalon can induce an ectopic sulcus with ros-
tral midline features (52), suggesting that FGFs
may play a role in the formation of the rostral
midline. However, no mutations in the FGF
pathway have yet been linked to the loss of the
rostral midline in mice or humans.

The ventral telencephalon, including the midline

Shh is essential for ventral forebrain develop-
ment, and mutations of this gene in mouse or
human lead to classic HPE phenotypes [(53–57);
see below]. In the forebrain of the Shh mouse
mutant, only dorsal precursors remain and all
ventral precursors that normally give rise to the
basal ganglia are missing (53, 58–60). Along with
its role as an inducer of ventral neural cells, Shh
is also required to maintain the proliferation and
survival of ventral precursor cells (54, 61–63). In
the Shh mutant, the loss of ventral structures is
accompanied by an apparent lack of separation
of the dorsal telencephalic hemispheres (53, 63).
This is likely not due to a failure of the dorsal
midline to initially form and is probably due
instead to a lack of overall growth and expan-
sion of the hemispheres (40, 60).
The loss of ventral cells observed in the Shh

mutant is rescued if its downstream antagonist
Gli3 is also mutated, indicating that factors other
than SHH can induce ventral development (58,
64). Indeed, FGFs are also required for this pro-
cess. In Fgfr1 and Fgfr2 double mutants or Fgf8
single mutants, ventral cells fail to be generated
(43, 65). Moreover, SHH acts genetically
upstream of FGFs in forming the ventral telen-
cephalon. SHH not only regulates the expression
of several Fgf genes, Fgf3, Fgf8, Fgf15, Fgf17,
and Fgf18 (60, 63, 64), but also depends on FGF
signaling to form all ventral regions because
even when SHH is expressed and active, no ven-
tral structures develop if FGF signaling is dis-
rupted (65). Conversely, FGF signaling can
ectopically induce ventral gene expression even

Fig. 1. Schematic representation of an E10.5 mouse head
(frontal view, dorsal up). Telencephalic midline areas are
highlighted in color, with the dorsal midline expressing bone
morphogenetic proteins (red), the rostral midline expressing
fibroblast growth factors (blue), and the ventral midline
expressing sonic hedgehog (green). ba: branchial arch, di:
diencephalon, h: heart, mes: mesencephalon, np: nasal
process, tel: telencephalon.
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when SHH signaling is disrupted (66). The regu-
lation of FGF expression and signaling by SHH
is indirect through Gli3. In Gli3 mouse mutants,
Fgf gene expression is expanded and the telen-
cephalon is ventralized (31, 64, 66, 67). More-
over, unlike for the Shh mutant, loss of Gli3
does not rescue loss of FGF signaling, placing
FGFs downstream of Gli3 (65).
The current understanding of the genetic regu-

lation of cerebral midline development is clearly
incomplete, but it provides a useful framework
in which to place future components of these
and other genetic pathways found to be required
to form the midline.

SHH: the central player in classic HPE?

Several mouse models mimicking classic forms
of HPE have been studied. All these models, as
well as the human mutations identified to date
that lead to classic HPE, suggest that the com-
mon denominator may be disruption of SHH
signaling, whether directly or indirectly, which
leads primarily to a lack of ventral cell types.

The SHH pathway

The SHH pathway has been extensively dissected
in several vertebrate and invertebrate species
[Fig. 2; reviewed by Fuccillo et al. and Chen
et al. (68, 69)]. In the absence of extracellular
SHH, the transmembrane protein Smoothened
(SMO) is inhibited by the SHH receptor,
Patched (PTC). Binding of SHH to PTC relieves
the inhibition on SMO and promotes the func-
tion of the GLI2 transcriptional activator while
inhibiting the repressor form of GLI3. Several
transmembrane proteins also promote SHH sig-
naling. In SHH-producing cells, DispatchedA
(DISPA) increases the amount of the cleaved,
active form of SHH (SHH-N) (70), whereas in
the SHH-responding cell, GAS1, CDO, and
BOC are all thought to promote SHH signaling
through the PTC receptor (29, 71–74).

Mutations in the SHH pathway lead to classic HPE
in mouse and human

In humans, mutations in three genes that encode
components of the SHH signaling pathway,
SHH (HPE3), PTC (HPE7), and GLI2 (HPE9),
lead to classic HPE (56, 57, 75–80). Only one of
these genes, Shh, when deleted in mice also leads
to HPE. Loss of mouse Gli2 does not appear to
affect forebrain development. The human PTC

mutations are hypothesized to be gain-of-function
mutations rather than loss-of-function mutations
because PTC antagonizes SHH signaling (75).
Hence, it is not surprising that deleting the Ptc
gene in mice does not result in HPE (81). Gener-
ating mouse models using the human PTC mis-
sense mutations would be informative in testing
the nature and effect of these mutations on SHH
signaling.
Other mouse genes that encode components of

SHH signaling also lead to HPE when deleted,
namely, Smo, Disp, Cdo, and Gas1 (29, 70, 71,
73, 82). The phenotype of these mice suggests
that these genes, if not genes that can cause HPE
when mutated on their own in humans, may at
least act as modifier loci in the presence of
another mutated gene. In fact, in mice, some of
these genes, Gas1 and Cdo as well as Gas1 and
Shh, have been shown to interact genetically to
worsen at least the craniofacial and neural tube
defects (72, 73). Cdo mutants themselves display
widely varying phenotypes depending on the
strain background, indicating the existence of
as yet unidentified modifier loci (28, 29). In
humans, to date, there are three examples of
genetic interactions between two loci leading to
HPE: SHH and TGIF (25), SHH and ZIC2 (25),
and GLI2 and PTC (26).

Disruption of other pathways that modulate
SHH signaling results in HPE

Genes in mice that are not directly implicated in
SHH signaling, but indirectly modulate it, also
result in HPE when mutated. For example, mice
deficient for genes that inhibit BMP activity,
Noggin and Chordin and Megalin/Lrp2, display
reduced SHH signaling and a loss of ventral cell
types that can resemble classic HPE (83, 84).
Other examples are components of the FGF
signaling pathway. As shown with Fgf8 and
Fgfr1;Fgfr2 mutants, FGF signaling, like SHH,
is required to generate ventral cell types in the
telencephalon (43, 65) and SHH depends on
FGFs for this process to occur (65). These
mouse studies provide additional candidates for
genes associated with classic HPE in humans.
Components of the Nodal signaling pathway

(Fig. 2), when mutated, have also been associ-
ated with HPE in humans and mice. Loss of
Nodal signaling leads to loss of Shh expression
(85, 86), suggesting that disruption of the Nodal
pathway indirectly results in HPE through loss
of SHH signaling. In humans, mutations in
TDGF1 (87), which encodes an extracellular
cofactor that facilitates Nodal binding to its
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receptor, FOXH1 (FAST1) (8, 12, 24), which
encodes a transcription factor that promotes
expression of Nodal-responsive genes, and TGIF
[HPE4, (88)], which encodes a transcription
cofactor that inhibits the Nodal pathway, have
all been associated with HPE. Similarly in
mouse, mutations in genes associated with
Nodal signaling, Nodal itself as well as Nodal
with its extracellular cofactor gene Gdf1, its
receptor gene ActrIIA, or its downstream effec-
tor gene Smad2, can result in phenotypes with
features of classic HPE (86, 89–91) (Table 1).
Six3 encodes a homeodomain transcription

factor of the Six/sine oculis family. In humans,
SIX3 maps to the HPE2 locus (92–94). In mice,
a partial loss of function of Six3 displays a total
lack of eyes and forebrain (95), precluding the
identification of a link between Six3, SHH sig-
naling, and ventral telencephalon development.
However, it is likely that even milder mutations
of Six3 would also result in loss of SHH signal-
ing and classic HPE-like phenotypes in mouse.

MIH HPE, a different molecular basis

In humans, ZIC2 (HPE5), although most often
associated with classic HPE features, is the only

gene in which mutations are also associated with
MIH HPE (15, 94, 96–98). In mouse, a hypo-
morphic allele of Zic2 largely recapitulates the
human phenotypes (44). Other than Zic2, how-
ever, only genes linked with BMP signaling have
shownMIH-like phenotypes in mice (Figs 2 and 3).
In particular, a double mutant of Bmpr1a and
Bmpr1b leads to MIH HPE with a loss of dor-
sal midline cell types, while Shh expression and
ventral development are normal (40).
In fact, the molecular causes for classic and

MIH HPE can be considered opposite because
BMP signaling and SHH signaling throughout
the neural axis have opposing, if not, antagonis-
tic effects on dorsal–ventral patterning. Consis-
tent with this, mutations that lead to increased
BMP signaling, such as those in Megalin/Lrp2 as
well as Noggin and Chordin, disrupt SHH
expression and lead to classic HPE phenotypes
(83, 84). Conversely, increasing the amount of
active SHH leads to decreased Bmp gene expres-
sion and features of MIH HPE (99).

Perspective

A growing understanding of the genetic
pathways regulating forebrain development, in

Fig. 2. Schematic representation of the pathways involved in MIH (blue) and classic (orange) holoprosencephaly in humans
and mice [Adapted from Ming and Muenke (24) and Krauss (30)]. BMP, bone morphogenetic protein.
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particular midline and ventral regions, along
with the identification of genes that lead to
HPE in both humans and mice, suggests that
the genetic complexity underlying HPE pheno-
types in the forebrain can perhaps be simplified
to few signaling pathways: those that modulate
SHH ventrally and those that modulate BMP
signaling dorsally (Fig. 3). Moreover, studies
using animal models are pointing toward candi-
date genes in humans that may act as modifiers
and account for the wide spectrum of HPE phe-
notypes. Identification of these genes is essential
in improving prenatal diagnoses and prognoses
for HPE.
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